Die Astronomie hat in den letzten 50 Jahren eine rasante Entwicklung erlebt. Mit der Entwicklung der Elektronik kamen 1983 die ersten CCD-Sensoren als Bildsensoren in der Astronomie zum Einsatz. Seitdem hat sich die Entwicklung der Detektoren mit hoher Ausbeute weiterentwickelt. Während noch bis vor wenigen Jahren die CCD Technologie „die Nase vorn“ hatte, dominieren immer mehr Astrokameras mit CMOS Technologie den Markt. Die Gründe dafür sind günstige Produktionskosten und hohe Auslesegeschwindigkeit. Eines der aktuell beliebtesten Modelle von CMOS-Kameras ist die QHY 268C, die in Deutschland von Astrolumina vertrieben wird.
Beitragsinhalt
Astrokameras erobern den Nachthimmel
Wer sich für die Astrofotografie interessiert, hat bei Kameras die Qual der Wahl. DSLR-Kameras mit CCD Sensor sind zwar immer noch beliebt, werden aber immer mehr von den preisgünstigeren Astrokameras mit CMOS Sensoren abgelöst. DSLRs und Astrokameras haben beide Vor- und Nachteile. Bei einer DSLRs können sich kurze Belichtungszeiten auf den Verschluss auswirken. Andererseits sind Spiegelreflex- und Systemkameras in vielen Haushalten bereits vorhanden und können auch tagsüber eingesetzt werden. Für gängige Modelle gibt es darüber hinaus Treiber zur Ansteuerung der Kameras mit entsprechender Astrosoftware. Die Standard-Kameras sind jedoch mit einem Filter ausgestattet, der tiefrote H-alphas herausfiltert. Aber genau dieser Spektralbereich kommt bei vielen Deep Sky Objekten vor. Deshalb bieten die meisten Händler Astrooptimierte Kameras an, bei denen der Filter entfernt wird. Diese sind dann aber für den tagesgebrauch nicht mehr nutzbar. Ein weiteres Problem ist, dass der Sensor bei langen Belichtungszeiten Wärme erzeugt und das Bildrauschen dadurch zunimmt. Ein weiterer Nachteil von einigen DSLRs ist das optische Design, das Einfluss auf die Vignettierung haben kann. Die Folge sind dunkle schwarze Ecken im Bild, die vor allem bei Vollformatkameras aufgrund des großen Bildsensors vorzufinden sind.
Es gibt Astrokameras, die speziell für die Astrofotografie entwickelt wurden. Wer sich eine Astrokamera mit großem Sensor und Kühlung zulegen möchte, muss aber tief in die Tasche greifen. Qualitativ hochwertige und leistungsstarke Astrokameras fangen bei etwa 2000 EUR an, bringen Hobbyastronomen aber einen unheimlichen Mehrwert.
Im Bereich der hochauflösenden Farbkameras greifen ambitionierte Astronomen gerne zu Modellen wie der ZWO ASI 1600MC. Mit der QHY 268C schickt der chinesische Hersteller QHY einen Konkurrenten ins Rennen, der für den gleichen Preis deutlich mehr Features bietet. Wir haben uns die QHY 268C näher angeschaut und zeigen, was die Astrokamera so besonders macht.
Astrokamera QHY 268C
Die QHY 268 gibt es als Farb- und Monochrom-Version und kann über den Händler Astrolumina bezogen werden. Die Kommunikation und Abwicklung mit dem Händler sind ausgezeichnet, weshalb wir uns an dieser Stelle nochmals bedanken möchten. In der hochauflösenden, gekühlten APS-C-Kamera ist ein Sony IMX571 Back Illuminted Sensor mit 26 Megapixeln (6280 x 4210 Pixel inkl. Overscan und optisch schwarzen Pixeln) verbaut. Dabei handelt es sich um die erste Generation eines CMOS-Sensors mit 16 Bit. Der Sensor zeichnet sich aber auch durch ein extrem niedriges Dunkelstrom- und Ausleserauschen sowie durch eine hohe Full-Well-Kapazität aus.
Der Kamerchip wird mit einem Deckglas geschützt, dss mit einer hochwertigen mehrschichtigen Antireflexbeschichtung versehen ist und den vollen Durchlass im UV und IR Bereich zulässt. Dadurch können auch Objekte, die lediglich im IR-Bereich strahlen, fotografiert werden.
Rund um den Kamerachip ist eine Anti-Tau-Heizung angebracht. Auf der Rückseite der Kamera befinden sich Anschlüsse für USB 3.0, 12V bei max. 3A sowie ein CFW Anschluss für Filterräder.
Zu den technischen Features der QHY 268C zählt unter anderem ein 1 GB DDR3 Arbeitsspeicher sowie eine Kühlung, die bis zu 35°C unter Umgebungstemperatur herunterkühlen kann. Im Sommer bei 25°C lässt sich der Sensor sehr gut bei -10°C durchgehend kühlen.
Zu der Kamera gehören auch Abstandsplatten, mit denen der für Komakorrektoren erforderliche Abstand von bis zu 55mm erreicht werden kann. Je nach Brennweite des Teleskops lassen sich so unterschiedliche Abstände einstellen.
Bei 26 Megapixel schafft die QHY 268C eine maximale Framerate von 6 Bildern pro Sekunde. Wer damit aber Planetenfotografie betreiben möchte, sollte die Auflösung herunterschrauben, um 30 Bilder pro Sekunde und mehr zu erreichen. Üblicherweise wird dabei ein Planet angefahren, relativ mittig im Bild zentriert und dann die Auflösung auf ein Minimum reduziert. Neben der Auflösung spielt aber auch die Pixelgröße eine wichtige Rolle. Die Pixelgröße beträgt 3.76μm x 3.76μm und ist ideal für Brennweiten von 400-1200m. Wer beispielsweise Planeten mit einem Newton Teleskop 8″ f/5 aufnehmen möchte, benötigt eine Barlowlinse mit 3-4fach Vergrößerung.
Lieferumfang
Im Lieferumfang der QHY 268C sind ein Netztweil, eine Trockenpatronen und verschiedene Abstandsplatten mit passenden Schrauben enthalten. Beim Einsatz eines Off-Axis-Guider, der mit den Distanzplatten verschraubt wird, sind allerdings kürzere Schrauben notwendig. Diese Senkkopfschrauben M3x20mm sind nicht im Lieferumfang enthalten, können aber für rund 3 EUR im Internet bestellt werden.
Auslesemodi
Die QHY 268C bietet insgesamt vier wählbare Auslesemodi an, die zu unterschiedlichen Bildergebnissen führen. Unterstützt wird der Auslesemodus aktuell vom QHY ASCOM Kameratreiber, der SharpCap-Software sowie von N.I.N.A..
Im High Gain Mode beträgt die Fullwell Capacity etwa 61ke- und im Extended Full Well Mode sogar über 90ke-. Die Full-Well-Kapazität gibt an, wie viele Elektronen ein Pixel-Element aufnehmen kann, bis es vollständig gesättigt wird. Mit der QHY 268C kann demnach so lange belichtet werden, bis die Sterne anfangen auszubrennen, denn dann ist die Fullwell-Kapazität des Sensor-Pixels erreicht. Vereinfacht ausgedrückt hat der einzelne Pixel so lange Photonen aufgefangen, bis er voll ist.
Das maximale Signal-Rausch-Verhältnis wird umso besser, je größer die Full-Well-Kapazität ist.
Der Gain ist bei Astrokameras vergleichbar mit der ISO der analogen Fotografie. Mit höherem Gain verliert man üblicherweise an Dynamik und die Bilder wirken körniger. Außerdem sinkt die Full-Well-Kapazität des Sensors, wobei das über den Offset korrigiert werden kann.
Modus # 0
Dies ist der Standard-Auslesemodus und bietet sich für die meisten Anwendungen an. Bei einer Verstärkung von 0 bis 25 sowie von 26-60 ist das Ausleserauschen ziemlich konstant. Wer sich für einen der beiden Bereiche entscheidet, sollte entweder Gain 0 oder Gain 26 wählen. Denn für alle Werte größer als 0 oder größer als 26 sinkt die Full Well Kapazität und damit auch die Bilddynamik.
Besitzer von schnellen Teleskopen sollte hier einen Gain von 0 wählen. Für langsamere Teleskope ab f/6 wird ein Gain von 26 empfohlen, da das Ausleserauschen dadurch verringert wird.
# 1 – Modus bei hoher Verstärkung
Immer mehr Astrofotografen setzen auf den High Gain Mode, der sich durch ein niedrigeres Ausleserauschen auszeichnet. Gleichzeitig ist die Full Well Kapazität aber auch geringer. Zwischen Gain 55 und 56 sinkt das Ausleserauschen von 3,5 e- auf 1,5 e-.
# 2 – Erweiterter Fullwell-Modus
Der größte Wert der Full-Well-Kapazität wird in diesem Modus erreicht. Die Verstärkung hat in diesem Modus keinen großen Einfluss auf das Ausleserauschen. Das Ausleserauschen beträgt in etwa 7 e-. Der Dynamikbereich ist realtiv konstant zwischen 13 und 14.
#3
Modus #3 is nahezu identisch mit Modus #2. Der einzige Unterschied liegt im geringeren Ausleserauschen zwischen 4,5 e- und 5,5 e- (statt 7,5 e-).
Update vom 10.08.2023
Die Firmware sowie die Treiber für das Betriebssystem ermöglichen nun weitere Modi.
Komakorrektor und Arbeitsabstand
Zu den beliebtesten Korrektoren für Koma zählen der Baader MPCC Mark III und der GPU von Lacerta. Für den Baader MPCC Mark III ist ein Adapter erforderlich, der das T2 Außengewinde des Korrektors mit dem M48 Innengewinde der QHY-Abstandsplatten verbindet. Der Adapter TST2-M48L eignet sich dafür sehr gut, hat aber auch eine optisch wirksame Baulänge von 2,5mm. Um dennoch die 55mm zwischen Kamerachip und Komakorrektor einzuhalten, muss die QHY-2,5mm Distanzplatte dem neuen Adapter weichen. Der QHY-Klemmring zwischen Kamera und Abstandshülsen ist mit den drei Fixierschrauben sehr praktisch, um z.B. zügig eine Bildfelddrehung zu erreichen.
Der QHY-Klemmring der neuen QHY 268C wurde bei den Modellen ab 2023 gegen ein kürzeres Stück ersetzt und ist damit dientisch zum Stück der QHY 268M. Der alte Klemmring wirkt sich aufgrund seiner Dimensionen (17,5mm + 6mm) negativ auf die back focal lenght aus. Die neue Version hat statt 23,5mm lediglich 14,5mm und kann somit ebenfalls an Filterräder oder ähnliches adaptiert werden.
Zwischen Kamerachip und Klemmring lassen sich 2″ Filter ganz einfach ohne Verschrauben einsetzen. Gleichzeitig lässt sich ein zweiter 2″ Filter auf der Vorderseite des Festklemmrings montieren. Der GPU von Lacerta verfügt bereits über ein M48 Innengewinde und kann direkt mit den QHY-Adaptern verschraubt werden.
Die Nutzung eines Filters wie z.B. einem Optolong L-Pro für lichtverschmutze Gebiete hat aber auch Nachteile. Das Einlegen zwischen Kamerachip und Klemmring ist zum einen aufwendig und zum anderen vergrößert sich damit der Arbeitsabstand und zwar um etwa 1/3 der Filterdicke. Das sind rund 0,3-0,6mm. Nun könnte man sich mit einer extrem dünnen Abstandsplatte behelfen, hat aber immer noch den Aufwand vom Klemmring. Mit dem Baader UFC bietet sich aber eine gute und aus unserer Sicht einzig brauchbare Lösung an.
Der neue Train für alle QHY 268C vor 2023 sieht mit einerm Filterschieber wie folgt aus:
- QHY268C (17.5 mm)
- QHY CAA M54(f) (6 mm)
- Baader UFC #2459117 M54(m) (2 mm)
- Baader UFC #2459110 (13 mm)
- Baader UFC #2459134 SP54(m) (1 mm)
- ZWO OAG (16,5) oder alternativ QHYCCD OAG-M #020079 M54(f) (3 mm) + QHYCCD OAG-M (10 mm) + QHYCCD OAG-M installation part #020080 M42(f) (3 mm)
- M42 Adapter zur Anbindung an Komakorrektor
Mit dem Filterschieber kann man nun z.B. ein Glasfilter nutzen, um den Fokus einzustellen und dann schnell auf einen Filter für Lichtverschmutzung wechseln.
Autoguiding mit Off-Axis-Guider
Zur Nachführkontrolle eignen sich vor allem Planeten-Einsteigerkameras. Die QHY5-ii Color gibt es z.B. gebraucht für etwa 120 EUR zu kaufen. In Kombination mit einem 50mm-Sucher gibt es die Kamera für unter 160 EUR. Damit lassen sich gelegentlich auch ganz brauchbare Planetenvideos aufnehmen. Auch lohnt es sich immer mal wieder, der Astrolumina-Webseite einen Besuch abzustatten und nach neuen Angeboten Ausschau zu halten.
Für die QHY-Kameras gibt es die passenden Treiber auf der Herstellerwebseite. Alle gängigen Programme wie SharpCap, FireCapture, SGP und PHD2 laufen damit einwandfrei. Bei PHD2 gibt es zwei wichtige Parameter, die vor der Inbetriebnahme gesetzt werden müssen: Brennweite und Durchmesser des Guiding-Scopes bzw. die Brennweite und der Durchmesser des Teleskops bei Verwendung eines Off-Axis-Guider. Auch ein Set von Darkframes ist sinnvoll, um zu verhindern, dass Hotpixel als Sterne erkannt werden.
Eine weitere Möglichkeit der Nachführkontrolle bietet ein Off-Axis-Guider, der das Leitrohr ersetzt und wesentlich einfacher zu handhaben ist. Dadurch wird nicht nur die Montierung weniger belastet, sondern auch die Nachführung genauer. Wenn die Guiding-Kamera über den Off-Axis-Guider auf die QHY 268C abgestimmt ist, können beide Kameras den Fokus gemeinsam erreichen. Der Fokus wird dann nur noch über den OAZ eingestellt. Die QHY 268C verfügt an der M48-5mm Distanzscheibe über ein M48-Innengewinde. Der ZWO OAG wird mit einem M48-Adapter ausgeliefert, sodass der OAG direkt mit dem M48-5mm Distanzring verschraubt werden kann. Kameras mit einem 1,25″ können über das ZWO OAG Okular festgeklemmt oder verschraubt werden. Wird die QHY 268C in Kombination mit einem ZWO OAG und dem Lacerta KomakorrF4 verwendet, muss der Arbeitsabstand angepasst werden. Um auf einen Arbeitsabstand von 55mm zwischen Kamerasensor und Komakorrektor-Stoppring zu kommen, werden an der QHY 268C die Distanzplatten M48-10 und M48-5 an dem 6mm-Festklemmring der QHY 268C fixiert. Dazu sind Senkkopfschrauben Kreuzschlitz M3-20mm erforderlich. Mit der QHY 268C (17,5mm), dem Fixierring (6mm), den Distanzplatten M48-5mm und M48-10mm sowie dem ZWO OAZ (16,5mm) ergibt sich ein Arbeitsabstand von exakt 55m.
Für die QHY 268C muss das OAG neu ausgerichtet werden. Über eine Schraube wird der Fokus eingestellt. Optional bietet sich das Aufrüsten mit einem ZWO Helical Focuser an, was das Einstellen des Fokus unheimlich erleichtert. Die zweite Stellschraube ist für das Prisma. Werksseitig ist der kleine Spiegel vom OAG zu weit drin, so dass große Sensoren wie APS-C und Vollformat verdeckt werden. Am besten lässt sich das mit Flats prüfen. Wenn ein Schatten entsteht, muss der Spiegel weiter nach außen positioniert werden. Der Spiegel sollte so ausgerichtet sein, dass er an der Kante vom Kamerasensor liegt. Weitere Informationen dazu gibt es in unserem Astrofotografie Ratgeber.
Inbetriebnahme
Mit der QHY 268C lassen sich neben Deep Sky Aufnahmen auch Planeten aufzeichnen. Bei der Inbetriebnahme ist darauf zu achten, dass zuerst das 12V Netzteil mit der Kamera verbunden wird, bevor diese mittels USB-Kabel an einem PC angeschlossen wird. Bei einem Störfall wie dem Einfrieren der Kamera sollte die Stromversorgung für einen Reset verwendet werden und nicht das USB-Kabel. Bevor die QHY 268C mit dem Rechner verbunden wird, sollten die aktuellen Treiber von der QHY-Webseite heruntergeladen werden. Die QHY 268C kann nach der Installation der Treiber mit ASCOM, SharpCap, N.I.N.A. oder der firmeneigenen EZCAP Software angesteuert werden. Während der Installation werden Anwender üblicherweise dazu aufgefordert, die Installationsverzeichnisse von ASCOM, SharpCap, FireCapture und andere anzugeben, da die benötigten SDK-DLLs in diese Verzeichnisse kopiert werden. Wird eine neuere Version von SharpCap installiert, können die benötigten DLLs des QHY AllInOne auch manuell in das entsprechende Verzeichnis kopiert werden.
QHY 268C und Sharpcap
Vereinzelt kommt es bei der QHY 268C in Kombination mit SharpCap 3.2 zu Frameproblemen. Das betrifft die Treiberversion QHYCCD_Win_AllinOne.21.03.13.17. Dabei werden die ersten 3 Frames gebuffert. Da viele Anwender SharpCap lediglich für die Planetenfotografie oder der Teleskopausrichtung bei kurzen Belichtungszeiten nutzen, wird das nicht auffallen. Bei der Deep Sky Astrofotografie wird das Problem bei Belichtungszeiten von 1s und mehr aber deutlich.
Abhilfe verschafft die Option „Force Still Mode: On„, die aber nicht von jeder Kamera unterstützt wird. In SharpCap 3.2 kommt es beim Setzen der Option zu einem unerlaubten Speicherzugriff. Die Folge ist ein Absturz des Tools.
Wer dennoch nicht auf SharpCap verzichten möchte, sollte die SharpCap 4.0 beta (Stand: 21.06.2021) herunterladen. Wir nutzen SharpCap 4.0 beta in der 64 bit Fassung (Link befindet sich unter dem Downloadbutton der 32 bit Version). Da die QHY-Treiber (QHYCCD_Win_AllinOne.21.03.13.17) bereits auf unserem Rechner installiert worden sind, haben wir alle DLLs aus dem Verzeichnis C:\Program Files\QHYCCD\AllInOne\sdk\x64 in das SharpCap 4.0 beta Verzeichnis C:\Program Files\SharpCap 4.0 (64 bit) kopiert und ersetzt. Alternativ kann das QHYAllinOne-Paket neu installiert werden. Nach dem Start von SharpCap 4.0 Beta sollte die Option „Forciere Stillmodus“ aktiviert werden. Nun kann man am rechten unteren Framebalken beobachten, wie nach dem Laden des Frames innerhalb von 1-2 Sekunden im Vollformatmodus bei 6253×4176 Pixel die Frames direkt angezeigt wird. SharpCap 4.0 beta bringt diesmal auch einen Deep Sky Sequencer mit, was das Tool für Astrofotografen noch interessanter macht.
Alternativ haben wir die Treiberversion QHYCCD_Win_AllinOne.20.06.26.36 getestet. Diese Version funktioniert mit SharpCap 3.2 einwandfrei. Allerdings sollte man berücksichtigen, dass bei jeder Umstellung der Belichtungszeit der DDR Buffer einmalig ein- und wieder ausgeschaltet werden muss.
Workaround für SharpCap 3.2
- SharpCap starten
- DDR-Buffer „off“ und „on“
- beim Wechsel zwischen den Belichtungszeiten erneut DDR Buffer „off“ und wieder „on“
Wem das Workaround zu umständlich ist oder im Live Stacker die Option zur Verkürzung der Belichtungszeit während dem Dithering nutzt, kann einen anderen Weg gehen. Dazu wird in der rechten Menüleiste ein Profil angelegt. Wenn SharpCap gestartet und das Profil ausgewählt und geladen wird, dann sollte das Workaround entfallen und alle Frames ohne Buffer angezeigt werden.
Noch während unserem Test haben wir die Entwickler von QHY in Beijing mit dem Problem konfrontiert und Unterstützung erhalten. Das Problem mit den Frames wird durch verschiedene Parameter verursacht. QHY hat in seinem letzte SDK für die QHY-Kamera einen dieser Parameter angepasst. Die Entwicklungsabteilung von QHY bemüht sich aktuell um eine Lösung, indem diverser Parametereinstellungen getestet werden.
Kühlung
Die QHY 268C kann auf bis zu 35°C zur Umgebungstemperatur herunterkühlen, und zwar für Belichtungszeiten ab 1s. Für Belichtungszeiten unter 1s kühlt die QHY 268C auf bis zu 30°C zur Umgebungstemperatur herunter. Die Kühlung der QHY 268C konnte in unserem Test aber lediglich einen Temperaturunterschied von 33°C anstatt der 35°C bewältigen. Das kann aber verschiedene Gründe haben.
Das Verhalten der Kühlung ist abhängig von der Belichtungszeit. Lange Belichtungszeiten führen zu Rauschen, dem durch die Kamerakühlung entgegengewirkt werden kann. Bei kürzeren Belichtungszeiten von 1-4s hat die Kameraregelung für die Kühlung ganz schön zu arbeiten. Für Belichtungszeiten darunter schaltet die Kühlung aus. Wer die Kurzzeitbelichtungsmethode verwendet und nach 30.000 Einzelframes mit je 1-4s die Biasframes mit der kürzesten Belichtungszeit erstellt, wird feststellen, dass die Temperatur der Kamera schlagartig hochgeht. Bias sind grundsätzlich aber nicht erforderlich, wenn Darks erstellt werden.
Der Kühler lässt sich über zwei Regler steuern. Mit dem Powerregler lässt sich die Leistung des Kühlers direkt regeln. Alternativ bietet sich ein zweiter Regler für die Target Temperatur an, um die Zieltemperatur direkt zu setzen.
Optimale Einstellungen
Folgende Tabelle zeigt einige von uns ermittelte Werte, wobei stets ein Kompromiss zwischen niedrigstem Rauschen und höchster Dynamik gegeben sein sollte. Bei der Kurzeitbelichtungstechnik sollte ein möglichst hoher Gain gewählt werden. Das ist z.B. bei einem Objekt wie dem Eskimonebel sehr vorteilhaft, da durch die kurze (Einzel-)Belichtungszeit schärfere Details erzielt werden können. Wer die Kurzzeitbelichtungstechnik nutzt und es von ZWO-Kameras gewohnt ist, den Gain auf 400 zu setzen, wird bei der QHY damit nicht weit kommen. Ab Gain 100 ist in Mode 0 und 1 nichts mehr von der Fullwellkapazität übrig. Daher sollte der Gain niemals höher als 100 gesetzt werden.
Neben dem Gain sollte auch der Offset mit Bedacht gewählt werden. Der Offset hat keinen Einfluss auf das Rauschen, sondern verschiebt lediglich die Nulllinie. Sind Gain und Temperatur gesetzt, darf ein Bias keine Intensität unter Null liefern. Im Histogramm sollte der Kennlinienberg vollständig zu sehen sein und nahe dem linken Rand vom Histogramm liegen. Ansonsten geht ein Teil der Dynamik verloren.
Da die Kamera technisch gesehen sehr gut aufgestellt ist, dürften auch abweichende Werte zu keinen großen Unterschieden im Ergebnis führen.
Öffnungsverhältnis | Gain (wenig Sterne oder viele Sterne) | Offset | Temperatur [°C] | Belichtungszeit [s] | Auslesemodus |
f/5 | 0 bis 60 | 30 | -15°C | 60-600 | High Gain Mode |
f/4 | 0 bis 60 | 30 | -15°C | 30-300 | High Gain Mode |
f/2.2 | 0 bis 60 | 30 | -15°C | 15-120 | High Gain Mode |
Im High Gain Mode (blaue Kurve) ist ein Gain von 60 vorteilhaft, da das Ausleserauschen sinkt, gleichzeitig aber die Dynamik ansteigt. Ein Nachteil ist, dass die Full-Well-Kapazität weniger als die Hälfte im Vergleich zu Gain 0 ist. Dadurch sind Sterne bei langen Belichtungszeiten irgendwann ausgebrannt.
Wenn nicht allzuviele Sterne im Bildfeld zu sehen sind, ist Gain 60 genau das richtige. Insbesondere bei lichtschwachen Objekten macht das durchaus Sinn, länger zu belichten, um ein halbwegs gutes Signal-Rauschverhältnis zu erhalten. Befinden sich viele helle Sterne im Bildfeld, sollte Gain 0 gewählt werden, um möglichst viele Photonen einfangen zu können und ausgebrannte Sterne im Bild zu verhindern.
Für die Flats und DarkFlats sollte Gain 0 genutzt werden, unabhängig vom gewählten Gain für die Lights.
USB-Geschwindigkeit
In manchen Fällen mag es sinnvoll erscheinen, den Parameter USB Traffic zu verstellen. Bei QHY Kameras ist dieser aber nicht umsonst auf 0 gesetzt. Je höher der Wert, desto länger ist die Ausleseperiode (engl.: readout period), was ein höheres Verstärkerglühen (engl.: amp glow) zur Folge hat.
First Light
Nach vier langen Monaten war es Anfang Juni 2021 endlich soweit und wir durften die ersten Aufnahmen mit der QHY 268C machen. Der Stadtrand als Standort, die eingeschränkte Sicht sowie starker Wind haben den Test erschwert. Zudem haben wir die QHY 268C mit diversen Tools wie APT, N.I.N.A. und SGP an 2 Nächten getestet. Damit blieben höchsten 60-90 Minuten pro Aufnahme übrig. Als interessante Objekte im Juni 2021 fielen folgende in die engere Wahl: Cirrusnebel, Hantelnebel, Ringnebel, Mondsichelnebel und NGC6914. Alle Fotos wurden mit APP gestackt und in Fitswork, GIMP und Affinity mit wenig Aufwand nachbearbeitet. Die Belichtungszeit der Deep Sky Astrofotos betrug 120x30s oder 25x120s. Flats und Darkflats wurden nicht angefertigt. Dithering wurde nicht genutzt.
Ausrüstung
Teleskop | Skywatcher 200 PDS 8″ Newton mit Moonlite Focuser 38mm |
Montierung | Skywatcher AZ-EQ 6 Pro |
Kamera | QHY 268C |
Korrektor | Lacerta GPU Komakorrektur |
Filter | – |
Guiding | ZWO Off-Axis-Guider mit ZWOASI 178MC |
Software | SharpCap, SGP, APP, GIMP, Affinity |
Belichtungszeit Einzelframes | 60-100 min |
Die QHY 268C hat sehr viel Potential nach oben und die oben gezeigt Bildern sind nur ein kleiner Vorgeschmack darauf, was mit dieser qualitativ hochwertigen Astrokamera möglich ist.
Planetenaufnahmen
Neben Deep Sky Aufnahmen sind mit der QHY 268C auch Planetenfotos möglich. Dazu wird die Brennweite des Teleskops anhand der vorhandenen Pixelgröße der Kamera berechnet. Bei einer Pixelgröße von 3,75µm multipliziert mit 5 ergibt sich ein Öffnungsverhältnis von 1/12. Bei einem f/5 Newton ist das Nyquist-Kriterium mit einer 3- oder 4-fach Barlow erfüllt. weitere Informationen dazu gibt es unter dem Stichwort Auflösungsvermögen.
Für unsere Aufnahmen haben wir einen ADC verwendet, der der Lichtbrechung durch die Atmosphäre entgegenwirkt. Darüber hinaus haben wir die niedrigste Auflösung gewählt, um möglichst viele Frames pro Sekunde zu bekommen.
Fazit
Die QHY 268C gehört für uns zu den besten One-Shot-Astrofarbkameras für Fortgeschrittene und Profis. Die APS-C-Kamera spielt aktuell ganz weit vorne mit und bietet ein ausgezeichnetes Preis-/Leistungsverhältnis. Die QHY 268C ist frei von Amp-Glow und weist ein minimales Ausleserauschen aus. Damit eignet sie sich sowohl für die Kurzzeitbelichtungstechnik als auch für Langzeitbelichtungen. Von uns gibt es eine ganz klare Kaufempfehlung.
Nachtrag nach Installation von SharpCap 4.0 mit aktuellem QHY SDK.
SharpCap 3.2: Laden des Profils funktioniert nicht. Es werden dennoch 3 Frames geladen. Bei SharpCap 3.2 scheint nur das Buffer on/off zu funktionieren. Erst dann werden die Frames in Echtzeit dargestellt. Dafür funktioniert LiveStacking einwandfrei.
SharpCap 4.0 mit neustem QHY SDK: Laden des Profils funktioniert einwandfrei. Dann werden auch die Frames korrekt angezeigt. Dafür funktioniert LiveStacking nicht. Nach Start des LiveStackings werden die Frames endlos geladen. Danach muss die kamera vom Strom genommen werden, um diese wieder anzusprechen.
Hallo TigerClaw,
das Problem mit den mehrfach gebufferten Frames wird umgangen, indem das Kameraprofil einfach nochmal geladen wird.
Somit erübrigt sich der Stillmodus oder das umswitchen des DDR-Buffer von ‚On‘ auf ‚Off‘.
LG
Didi
Guten Morgen,
das hatte bei mir leider nicht geklappt. Ich habe es sowohl in SharpCap 3.2 als auch in SharpCap 4.0 probiert. Bei sharpcap 4.0 ist es sogar so, dass die die Software die Bilder mit falschen Informationen abspeichert, statt RGGB ist das GRGB. Nach der Ursache wird aktuell gemeinsam mit dem Entwickler der Software gesucht.
Da bei Deep Sky aber über längere Zeit eine feste Belichtungszeit eingestellt wird, ist das Ein- und Ausschalten des Buffers keine grosse Hürde. Aber ich werde mir das die Tage nochmal anschauen und mit dem Kameraprofil an einem zweiten Rechner probieren. Möglicherweise hängt das auch mit den Treiberversionen zusammen.
Viele Grüsse